golang-方法和接口

方法和接口

方法

Go 没有类。不过你可以为结构体类型定义方法。

方法就是一类带特殊的 接收者 参数的函数。

方法接收者在它自己的参数列表内,位于 func 关键字和方法名之间。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
package main

import (
"fmt"
"math"
)

type Vertex struct {
X, Y float64
}

func (v Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}

func main() {
v := Vertex{3, 4}
fmt.Println(v.Abs())
}

输出:

1
5

在此例中,Abs 方法拥有一个名为 v,类型为 Vertex 的接收者。

方法即函数

记住:方法只是个带接收者参数的函数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
package main

import (
"fmt"
"math"
)

type Vertex struct {
X, Y float64
}

func Abs(v Vertex) float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}

func main() {
v := Vertex{3, 4}
fmt.Println(Abs(v))
}

输出:

1
5

这个例子中 Abs 的写法就是个正常的函数,功能并没有什么变化。

方法(续)

你也可以为非结构体类型声明方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
package main

import (
"fmt"
"math"
)

type MyFloat float64

func (f MyFloat) Abs() MyFloat {
if f < 0 {
return -f
}
return f
}

func main() {
f := MyFloat(-math.Sqrt2)
fmt.Println(f.Abs())
}

输出:

1
1.4142135623730951

在此例中,我们看到了一个带 Abs 方法的数值类型 MyFloat

你只能为在同一包内定义的类型的接收者声明方法,而不能为其它包内定义的类型(包括 int 之类的内建类型)的接收者声明方法。

(译注:就是接收者的类型定义和方法声明必须在同一包内;不能为其他包中声明的类型声明方法。)

指针接收者

你可以为指针接收者声明方法。

这意味着对于某类型 T,接收者的类型可以用 *T 的文法。(此外,T 不能是像 *int这样的指针。)

例如,这里为 *Vertex 定义了 Scale 方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
package main

import (
"fmt"
"math"
)

type Vertex struct {
X, Y float64
}

func (v Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}

func (v *Vertex) Scale(f float64) {
v.X = v.X * f
v.Y = v.Y * f
}

func main() {
v := Vertex{3, 4}
v.Scale(10)
fmt.Println(v.Abs())
}

输出:

1
50

指针接收者的方法可以修改接收者指向的值(就像 Scale 在这做的)。由于方法经常需要修改它的接收者,指针接收者比值接收者更常用。

试着移除第 16 行 Scale 函数声明中的 *,观察此程序的行为如何变化。

若使用值接收者,那么 Scale 方法会对原始 Vertex 值的副本进行操作。(对于函数的其它参数也是如此。)Scale 方法必须用指针接受者来更改 main 函数中声明的 Vertex 的值。

指针与函数

现在我们要把 AbsScale 方法重写为函数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
package main

import (
"fmt"
"math"
)

type Vertex struct {
X, Y float64
}

func Abs(v Vertex) float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}

func Scale(v *Vertex, f float64) {
v.X = v.X * f
v.Y = v.Y * f
}

func main() {
v := Vertex{3, 4}
Scale(&v, 10)
fmt.Println(Abs(v))
}

输出:

1
50

同样,我们先试着移除掉第 16 行 Scale 函数声明中的 *。尝试编译,会得到 ./src.go:23:8: cannot use &v (type *Vertex) as type Vertex in argument to Scale,按照提示,我们再把 main 函数中 Scale 函数的调用里的 &v 改成 v,再尝试编译,通过了,输出结果为 5

方法与指针重定向

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
package main

import "fmt"

type Vertex struct {
X, Y float64
}

func (v *Vertex) Scale(f float64) {
v.X *= f
v.Y *= f
}

func ScaleFunc(v *Vertex, f float64) {
v.X *= f
v.Y *= f
}

func main() {
v := Vertex{3, 4}
v.Scale(2)
ScaleFunc(&v, 10)

p := &Vertex{4, 3}
p.Scale(3)
ScaleFunc(p, 8)

fmt.Println(v, p)
}

输出:

1
{60 80} &{96 72}

比较前两个程序,你大概会注意到带指针参数的函数必须接受一个指针:

1
2
3
var v Vertex
ScaleFunc(v, 5) // 编译错误!
ScaleFunc(&v, 5) // OK

而以指针为接收者的方法被调用时,接收者既能为值又能为指针:

1
2
3
4
var v Vertex
v.Scale(5) // OK
p := &v
p.Scale(10) // OK

对于语句 v.Scale(5),即便 v 是个值而非指针,带指针接收者的方法也能被直接调用。 也就是说,由于 Scale 方法有一个指针接收者,为方便起见,Go 会将语句 v.Scale(5) 解释为 (&v).Scale(5)

方法与指针重定向(续)

同样的事情也发生在相反的方向。

接受一个值作为参数的函数必须接受一个指定类型的值:

1
2
3
var v Vertex
fmt.Println(AbsFunc(v)) // OK
fmt.Println(AbsFunc(&v)) // 编译错误!

而以值为接收者的方法被调用时,接收者既能为值又能为指针:

1
2
3
4
var v Vertex
fmt.Println(v.Abs()) // OK
p := &v
fmt.Println(p.Abs()) // OK

这种情况下,方法调用 p.Abs() 会被解释为 (*p).Abs()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
package main

import (
"fmt"
"math"
)

type Vertex struct {
X, Y float64
}

func (v Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}

func AbsFunc(v Vertex) float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}

func main() {
v := Vertex{3, 4}
fmt.Println(v.Abs())
fmt.Println(AbsFunc(v))

p := &Vertex{4, 3}
fmt.Println(p.Abs())
fmt.Println(AbsFunc(*p))
}

输出:

1
2
3
4
5
5
5
5

选择值或指针作为接收者

使用指针接收者的原因有二:

  1. 方法能够修改其接收者指向的值。

  2. 这样可以避免在每次调用方法时复制该值。若值的类型为大型结构体时,这样做会更加高效。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
package main

import (
"fmt"
"math"
)

type Vertex struct {
X, Y float64
}

func (v *Vertex) Scale(f float64) {
v.X = v.X * f
v.Y = v.Y * f
}

func (v *Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}

func main() {
v := &Vertex{3, 4}
fmt.Printf("Before scaling: %+v, Abs: %v\n", v, v.Abs())
v.Scale(5)
fmt.Printf("After scaling: %+v, Abs: %v\n", v, v.Abs())
}

输出:

1
2
Before scaling: &{X:3 Y:4}, Abs: 5
After scaling: &{X:15 Y:20}, Abs: 25

在本例中,ScaleAbs 接收者的类型为 *Vertex,即便 Abs 并不需要修改其接收者。

通常来说,所有给定类型的方法都应该有值或指针接收者,但并不应该二者混用。(我们会在接下来几节中明白为什么。)

接口

接口类型 是由一组方法签名定义的集合。

接口类型的变量可以保存任何实现了这些方法的值。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
package main

import (
"fmt"
"math"
)

type Abser interface {
Abs() float64
}

func main() {
var a Abser
f := MyFloat(-math.Sqrt2)
v := Vertex{3, 4}

a = f // a MyFloat implements Abser
a = &v // a *Vertex implements Abser

// In the following line, v is a Vertex (not *Vertex)
// and does NOT implement Abser.
a = v

fmt.Println(a.Abs())
}

type MyFloat float64

func (f MyFloat) Abs() float64 {
if f < 0 {
return float64(-f)
}
return float64(f)
}

type Vertex struct {
X, Y float64
}

func (v *Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}

注意: 示例代码的 22 行存在一个错误。由于 Abs 方法只为 *Vertex (指针类型)定义,因此 Vertex(值类型)并未实现 Abser

将第22行注释后,输出:

1
5

接口是隐式实现的

类型通过实现一个接口的所有方法来实现该接口。既然无需专门显式声明,也就没有“implements”关键字。

隐式接口将接口的定义与其实现分离,这样随后的接口实现可以出现在任何包中,而无需提前准备。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
package main

import "fmt"

type I interface {
M()
}

type T struct {
S string
}

// 此方法表示类型 T 实现了接口 I,但我们无需显式声明此事。
func (t T) M() {
fmt.Println(t.S)
}

func main() {
var i I = T{"hello"}
i.M()
}

输出:

1
hello

接口值

接口也是值。它们可以像其它值一样传递。

接口值可以用作函数的参数或返回值。

在内部,接口值可以看做包含值和具体类型的元组:

1
(value, type)

接口值保存了一个具体底层类型的具体值。

接口值调用方法时会执行其底层类型的同名方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
package main

import (
"fmt"
"math"
)

type I interface {
M()
}

type T struct {
S string
}

func (t *T) M() {
fmt.Println(t.S)
}

type F float64

func (f F) M() {
fmt.Println(f)
}

func main() {
var i I

i = &T{"Hello"}
describe(i)
i.M()

i = F(math.Pi)
describe(i)
i.M()
}

func describe(i I) {
fmt.Printf("(%v, %T)\n", i, i)
}

输出:

1
2
3
4
(&{Hello}, *main.T)
Hello
(3.141592653589793, main.F)
3.141592653589793

底层值为 nil 的接口值

即便接口内的具体值为 nil,方法仍然会被 nil 接收者调用。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
package main

import "fmt"

type I interface {
M()
}

type T struct {
S string
}

func (t *T) M() {
if t == nil {
fmt.Println("<nil>")
return
}
fmt.Println(t.S)
}

func main() {
var i I

var t *T

i = t
describe(i)
i.M()

i = &T{"hello"}
describe(i)
i.M()
}

func describe(i I) {
fmt.Printf("(%v, %T)\n", i, i)
}

输出:

1
2
3
4
(<nil>, *main.T)
<nil>
(&{hello}, *main.T)
hello

在一些语言中,这会触发一个空指针异常,但在 Go 中通常会写一些方法来优雅地处理它(如本例中的 M 方法)。

注意: 保存了 nil 具体值的接口其自身并不为 nil。

nil 接口值

nil 接口值既不保存值也不保存具体类型。

为 nil 接口调用方法会产生运行时错误,因为接口的元组内并未包含能够指明该调用哪个 具体 方法的类型。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
package main

import "fmt"

type I interface {
M()
}

func main() {
var i I
describe(i)
i.M()
}

func describe(i I) {
fmt.Printf("(%v, %T)\n", i, i)
}

输出:

1
2
3
4
5
6
7
8
(<nil>, <nil>)
panic: runtime error: invalid memory address or nil pointer dereference
[signal SIGSEGV: segmentation violation code=0x1 addr=0x0 pc=0x1093e31]

goroutine 1 [running]:
main.main()
/a-tour-of-go/Nil-interface-values/src.go:12 +0x91
exit status 2

空接口

指定了零个方法的接口值被称为 空接口:

1
interface{}

空接口可保存任何类型的值。(因为每个类型都至少实现了零个方法。)

空接口被用来处理未知类型的值。例如,fmt.Print 可接受类型为 interface{} 的任意数量的参数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
package main

import "fmt"

func main() {
var i interface{}
describe(i)

i = 42
describe(i)

i = "hello"
describe(i)
}

func describe(i interface{}) {
fmt.Printf("(%v, %T)\n", i, i)
}

输出:

1
2
3
(<nil>, <nil>)
(42, int)
(hello, string)

类型断言

类型断言 提供了访问接口值底层具体值的方式。

1
t := i.(T)

该语句断言接口值 i 保存了具体类型 T,并将其底层类型为 T 的值赋予变量 t

i 并未保存 T 类型的值,该语句就会触发一个 panic。

为了 判断 一个接口值是否保存了一个特定的类型,类型断言可返回两个值:其底层值以及一个报告断言是否成功的布尔值。

1
t, ok := i.(T)

i 保存了一个 T,那么 t 将会是其底层值,而 oktrue

否则,ok 将为 falset 将为 T 类型的零值,程序并不会产生恐慌。

请注意这种语法和读取一个映射时的相同之处。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
package main

import "fmt"

func main() {
var i interface{} = "hello"

s := i.(string)
fmt.Println(s)

s, ok := i.(string)
fmt.Println(s, ok)

f, ok := i.(float64)
fmt.Println(f, ok)

f = i.(float64) // panic
fmt.Println(f)
}

输出:

1
2
3
4
5
6
7
8
9
hello
hello true
0 false
panic: interface conversion: interface {} is string, not float64

goroutine 1 [running]:
main.main()
/go-tour/Type-assertions/src.go:17 +0x1f7
exit status 2

类型选择

类型选择(Type switches)是一种按顺序从几个类型断言中选择分支的结构。

类型选择与一般的 switch 语句相似,不过类型选择中的 case 为类型(而非值), 它们针对给定接口值所存储的值的类型进行比较。

1
2
3
4
5
6
7
8
switch v := i.(type) {
case T:
// v 的类型为 T
case S:
// v 的类型为 S
default:
// 没有匹配,v 与 i 的类型相同
}

类型选择中的声明与类型断言 i.(T) 的语法相同,只是具体类型 T 被替换成了关键字 type

此选择语句判断接口值 i 保存的值类型是 T 还是 S。在 TS 的情况下,变量 v 会分别按 TS 类型保存 i 拥有的值。在默认(即没有匹配)的情况下,变量 vi 的接口类型和值相同。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
package main

import "fmt"

func do(i interface{}) {
switch v := i.(type) {
case int:
fmt.Printf("Twice %v is %v\n", v, v*2)
case string:
fmt.Printf("%q is %v bytes long\n", v, len(v))
default:
fmt.Printf("I don't know about type %T!\n", v)
}
}

func main() {
do(21)
do("hello")
do(true)
}

输出:

1
2
3
Twice 21 is 42
"hello" is 5 bytes long
I don't know about type bool!

Stringer

fmt 包中定义的 Stringer 是最普遍的接口之一。

1
2
3
type Stringer interface {
String() string
}

Stringer 是一个可以用字符串描述自己的类型。fmt 包(还有很多包)都通过此接口来打印值。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
package main

import "fmt"

type Person struct {
Name string
Age int
}

func (p Person) String() string {
return fmt.Sprintf("%v (%v years)", p.Name, p.Age)
}

func main() {
a := Person{"Foo", 12}
b := Person{"Buzz", 23}
fmt.Println(a, b)
}

输出:

1
Foo (12 years) Buzz (23 years)
练习:Stringer

通过让 IPAddr 类型实现 fmt.Stringer 来打印点号分隔的地址。

例如,IPAddr{1, 2, 3, 4} 应当打印为 "1.2.3.4"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
package main

import "fmt"

type IPAddr [4]byte

func (i IPAddr) String() string {
return fmt.Sprintf("%v.%v.%v.%v", i[0], i[1], i[2], i[3])
}

func main() {
hosts := map[string]IPAddr{
"loopback": {127, 0, 0, 1},
"googleDNS": {8, 8, 8, 8},
}
for name, ip := range hosts {
fmt.Printf("%v: %v\n", name, ip)
}
}

错误

Go 程序使用 error 值来表示错误状态。

fmt.Stringer 类似,error 类型是一个内建接口:

1
2
3
type error interface {
Error() string
}

(与 fmt.Stringer 类似,fmt 包在打印值时也会看看值是否满足 error 接口。)

通常函数会返回一个 error 值,调用的它的代码应当判断这个错误是否等于 nil 来进行错误处理。

1
2
3
4
5
6
i, err := strconv.Atoi("42")
if err != nil {
fmt.Printf("couldn't convert number: %v\n", err)
return
}
fmt.Println("Converted integer:", i)

error 为 nil 时表示成功;非 nil 的 error 表示失败。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
package main

import (
"fmt"
"time"
)

type MyError struct {
When time.Time
What string
}

func (e *MyError) Error() string {
return fmt.Sprintf("at %v, %s", e.When, e.What)
}

func run() error {
return &MyError{
time.Now(),
"it didn't work",
}
}

func main() {
if err := run(); err != nil {
fmt.Println(err)
}
}

输出:

1
at 2020-02-07 17:26:08.694498 +0800 CST m=+0.000541141, it didn't work
练习:错误

之前的练习中复制 Sqrt 函数,修改它使其返回 error 值。

Sqrt 接受到一个负数时,应当返回一个非 nil 的错误值。复数同样也不被支持。

创建一个新的类型

1
type ErrNegativeSqrt float64

并为其实现

1
func (e ErrNegativeSqrt) Error() string

方法使其拥有 error 值,通过 ErrNegativeSqrt(-2).Error() 调用该方法应返回 "cannot Sqrt negative number: -2"

注意:Error 方法内调用 fmt.Sprint(e) 会让程序陷入死循环。可以通过先转换 e来避免这个问题:fmt.Sprint(float64(e))。这是为什么呢?

修改 Sqrt 函数,使其接受一个负数时,返回 ErrNegativeSqrt 值。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
package main

import (
"fmt"
"math"
)

func Sqrt(x float64) (float64, error) {
if x < 0 {
return 0, ErrNegativeSqrt{x}
} else {
return math.Sqrt(x), nil
}
}

type ErrNegativeSqrt struct {
val float64
}

func (e ErrNegativeSqrt) Error() string {
return fmt.Sprintf("Error Negative Sqrt of %v", e.val)
}

func main() {
var a float64 = -1
if res, err := Sqrt(a); err != nil {
fmt.Println(err)
} else {
fmt.Println("Sqrt(", a, ") is ", res)
}
}

输出:

1
Error Negative Sqrt of -1

Reader

io 包指定了 io.Reader 接口,它表示从数据流的末尾进行读取。

Go 标准库包含了该接口的许多实现,包括文件、网络连接、压缩和加密等等。

io.Reader 接口有一个 Read 方法:

1
func (T) Read(b []byte) (n int, err error)

Read 用数据填充给定的字节切片并返回填充的字节数和错误值。在遇到数据流的结尾时,它会返回一个 io.EOF 错误。

示例代码创建了一个 strings.Reader 并以每次 8 字节的速度读取它的输出。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
package main

import (
"fmt"
"io"
"strings"
)

func main() {
r := strings.NewReader("Hello, Reader!")

b := make([]byte, 8)
for {
n, err := r.Read(b)
fmt.Printf("n=%v err=%v b=%v\n", n, err, b)
fmt.Printf("b[:n]=%q\n", b[:n])
if err == io.EOF {
break
}
}
}

输出:

1
2
3
4
5
6
n=8 err=<nil> b=[72 101 108 108 111 44 32 82]
b[:n]="Hello, R"
n=6 err=<nil> b=[101 97 100 101 114 33 32 82]
b[:n]="eader!"
n=0 err=EOF b=[101 97 100 101 114 33 32 82]
b[:n]=""
练习:Reader

实现一个 Reader 类型,它产生一个 ASCII 字符 'A' 的无限流。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
package main

import "./reader"

type MyReader struct{}

func (r MyReader) Read(b []byte) (int, error) {
for i := 0; i < len(b); i++ {
b[i] = 'A'
}
return len(b), nil
}

func main() {
reader.Validate(MyReader{})
}
练习:rot13Reader

有种常见的模式是一个 io.Reader 包装另一个 io.Reader,然后通过某种方式修改其数据流。

例如,gzip.NewReader 函数接受一个 io.Reader(已压缩的数据流)并返回一个同样实现了 io.Reader*gzip.Reader(解压后的数据流)。

编写一个实现了 io.Reader 并从另一个 io.Reader 中读取数据的 rot13Reader,通过应用 rot13 代换密码对数据流进行修改。

rot13Reader 类型已经提供。实现 Read 方法以满足 io.Reader

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
package main

import (
"io"
"os"
"strings"
)

type rot13Reader struct {
r io.Reader
}

func (a rot13Reader) Read(b []byte) (n int, err error) {
bt := make([]byte, 1)
for i := 0; i < len(b); i++ {
_, erra := a.r.Read(bt)
if erra != nil {
return i, erra
}
switch {
case (bt[0] >= 'A' && bt[0] <= 'M') || (bt[0] >= 'a' && bt[0] <= 'm'):
b[i] = bt[0] + 13
case (bt[0] >= 'N' && bt[0] <= 'Z') || (bt[0] >= 'n' && bt[0] <= 'z'):
b[i] = bt[0] - 13
default:
b[i] = bt[0]
}
}
return len(b), nil
}

func main() {
s := strings.NewReader("Lbh penpxrq gur pbqr!")
r := rot13Reader{s}
io.Copy(os.Stdout, &r)
}

输出:

1
You cracked the code!

图像

image 包定义了 Image 接口:

1
2
3
4
5
6
7
package image

type Image interface {
ColorModel() color.Model
Bounds() Rectangle
At(x, y int) color.Color
}

注意: Bounds 方法的返回值 Rectangle 实际上是一个 image.Rectangle,它在 image 包中声明。

(请参阅文档了解全部信息。)

color.Colorcolor.Model 类型也是接口,但是通常因为直接使用预定义的实现 image.RGBAimage.RGBAModel 而被忽视了。这些接口和类型由 image/color包定义。

1
2
3
4
5
6
7
8
9
10
11
12
package main

import (
"fmt"
"image"
)

func main() {
m := image.NewRGBA(image.Rect(0, 0, 100, 100))
fmt.Println(m.Bounds())
fmt.Println(m.At(0, 0).RGBA())
}

输出:

1
2
(0,0)-(100,100)
0 0 0 0